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ABSTRACT

" This paper gives a general method for the stable evaluation of inner products of
multivariate simplex splines. The method is based on a recurrence relation for these inner

products. The base cases for this recurrence relation are handled by triangulating certain
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SIGNIFICANCE AND EXPLANATION 'E‘s

, For many types of projection methods (Rayleigh-Ritz-Galerkin. for example), it is
necessary to compute inner products of the basis elements in order to be able to implement
the scheme. This paper discusses a method for evaluating these inner products in the case

where the basis elements are simplex splines.
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THE EVALUATION OF INNER PRODUCTS OF
MULTIVARIATE SIMPLEX SPLINES ’

Thomas A. Grandine!+?
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i In many practical problems, it is necessary to be able to compute the value of the N
E inner product of any two simplex splines. This is typically the case for many types of :'_-j:::::
» .‘- ‘.\
r?l??
E projection methods, including Rayleigh-Ritz-Galerkin and least squares. While various ‘x“’
NG
FAGAE
h types of quadrature methods can be used for this purpose, Dahmen and Micchelli [DM81] !‘
: report that far better results are obtained if exact values of these inner products are used. .:ZE'.:'_:‘.:
i Developing an algorithm for evaluating these inner products is the goal of this paper. '._::5_::"‘.
Y The multivariate polyhedral B-spline Mp is defined as a distribution by :-::\.*_
* N
A

Msf = [ foP, 1)
Rm B ":1

.:'_-

where f is an arbitrary m-variate function, B is a polyhedral body in R", n > m, and

P:R"™ — R™ is a linear map. Typically, P is chosen to be the canonical projector, i.e.

P :z — z(i)T2,. This is a generalization of an earlier definition due to Micchelli in which

t=1" '-'_’ .__“
B is chosen specifically to be a simplex. In particular, if zo, z1, ..., T, are points in R", \
and if | A} denotes the convex hull of A, then the multivariate simplex spline M{- z.. ..., 1,) [ %
o
'-‘.'-".'
is defined to be (M80}: 2
A
1

( 1 [ N

M(-|zay.nzp)f = ——~——————/ c P. 2

R™ ) voln(Zos ey Tn) Sz 20 / (2) hGRCS

e
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This definition. which is a convenient reformulation of an earlier definition of de Boor
'B76 . is a special case of definition (1) except for the difference in normalization.

The purpose of this paper is to describe a method for evaluating inner products of
simplex splines (with the normalization given in (2)). The inner product referred to here

is the one given by the following integral:

(f,9) := fg.

Rvu
An identity can be used to evaluate the integral in the case where f and g happen to be

two polyhedral splines, say Mp and M, defined as in (1) by

Maf:=/8foP

R™

Mci = [ 100
R™ c
for two ordinary linear maps P and Q into R™. From [DMB82-2], it is known that the

convolution of two polyhedral splines satisfies

Mowc(z) = [ Maly—2)Mcs)dy, ®

where B - C is the polyhedral set which is the usual Cartesian product of the polyhedral

sets B and C,i.e. B x C := {(r,s)|r € B,s € C}. Setting z = 0 in this equation results

in the identity SNk

/R'" Mpg(z)Mc(z)dz = Mg (0), (4)

/Rm Mp . c(z)f(r)dz = /B /C /(Qy - Pz)dydz. (5)

If B and C are simplices. then this relation says that the value of the inner product of two

simplex splines is given by the value of a certain simploid spline at the origin. A simploid




e

is defined as the Cartesian product of two simplices. Thus, if an accurate way can be

found to evaluate this simploid spline, then an accurate way has been found to compute
the value of the desired inner product.

Dahmen and Micchelli IDM81-2! have proposed the use of the recurrence relation for
polyhedral splines for this purpose. Specialized to the case of the simploid, and then
rewritten in terms of inner products, this recurrence relation takes on the following form
[DM81-2]:

Theorem 1: If B = [z,...,z,], C = [yos...,¥p), and .| oa;z; = Z;’=0 Bjyj, with

Yo = Z;:o B; =1, then

1
M erZn )M s Ypldz = —————
. (I'Io In) (zlyO yP) x n+p- m(
n
"Za,- R M(z|zo, ... Zio1, Tit1, oo Tn) M (Z|Y0, -, yp)dz+ (6)
f=0

n M(z(zo, ..., 20 )JM(Z{yo, s Uj— 1, Yjt 15 o y,)dz) .

P
PY_B;

j=0
This recurrence relation can be implemented using the linear programming approach

of {G84]. This technique requires, at the first step, a solution to the following problem:

Find a, and 8, so that

n L4
Za’z‘ti - Zﬂjyj =0

1=0 j::(l
n
S a-
1=0
P (7)
d.8=1
]_—O

a, >0, 1t=0,..,n

B8; 20, j=0,..,p
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As described in G84:, problems of this sort can be sot:ed via the dual simplex method for

linear programming problems. This method always results in solutions for which all but
m + 2 of the a, and 3, are zero. This is because the problem (7) has only m + 2 equality
constraints in it. and solutions to linear programming problems can always be made to
satisfy a complementarity condition (see [Da63: and [Ma78]). This number is a drastic
improvement over the 2m + 2 given by Dahmen and Micchelli in |DM81].

In any case, the implementation of the recurrence relation (6) proceeds just as in [G84].
The snag appears when one or the other (or both) of the simplex splines appearing on the
left-hand-side of (6) are piecewise constant functions, which happens when a simplex spline
has exactly m + 1 knots present. In this case, the recurrence relation cannot be applied,
for then some of the functions appearing on the right-hand-side of the recurrence relation
will not be well-defined. Dahmen and Micchelli conquer this obstacle by expressing each
of the simplex splines in the integral on the left-hand-side of (6) as a linear combination
of cone splines. Then, since the convolution of two cone splines is again a cone spline,
they are able to write this inner product as a linear combination of cone splines (see [D79],
(D80}, and |DM81-2]), each of which may be evaluated using the recurrence relation for
cone splines.

There is a way, however, to avoid going to the trouble of implementing the recurrence
relation for cone splines. In fact, the cone splines can be dispensed with altogether by not-
ing, as was done already in |H82! and |[DM82, that any simploid can easily be triangulated
merely by arranging its vertices in a rectangular grid and tracing the various paths through

this grid. This makes it possible to express any simploid spline as a linear combination of

simplex splines, each of which may be evaluated using the method described in |G84].
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In what follows, let T, := {zq,...,z,) and 3 := [ya,...,yp). With t := ("2F), let
04....,0¢ be a collection of simplices such that {o,} is the triangulation of £, x £ that is
produced via the following construction {H82{: Consider the following grid, representing

the set ¥; x &,,
(I(Hyp) (Ih yp) (Im yp)

(Io;yl) (Ix;yx) (In;yl).
(Z(,, yO) (-tl’ yO) ee (xn’ yO)

Take all the paths through this grid given by o0 = {so,....504,}, Where so = (Zo,0),
Sn+p = (Zn,yp), and if s; = (z;,y¢), then s;_, must be either (z;_1,ye) or (z;,ye-1).
There are ";) different paths through the grid. It can be shown that the set of all paths
through the grid is a triangulation of the simploid (Lemma 3 in |H82]).

This construction ensures the truth of

. Lemma 1: :::"-’i
j
‘ vol¥, x £, 3
A volo, = ——— .
:. t _:.:_:‘
=l
"i Proof: Let P; be the canonical projector from £; x ¥ into X;. Then ::«’.f?,
- volZ; x T3 _ volZ, - volE, R
; t t DN
- _ n!volP,0; - p'vol Pyo; e
i (n+ p)! Q>
) = volo;.
'. With this lemma, it is possible to prove 'Z:lj'
i w.\'\'
) Theorem 2: ~
\ RN
A famin
'. t M (0) :‘\:.:-
M(zlzq, ...,z )M(z|ya, ..., yp)dz = (1/t) z 7 (8) ::S;
nm =1 VO]O, ;t:’

:: 5 \
I: : " 1
» \ .]
!'\, R L ‘l ..... -~ ad - - - - —m‘
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Proof: By definition, NN
\j‘."

M = P on
EIXE’_'-[ = fo N4
R™ El XE’_‘ R 7‘ N

]
-
Ing

<

so that Mz, .5, = Y.._, Mo,. Then

1T AR A %S s T TR TN Sy RTINS A
I
7~
S~
o

My, Mg,
. 20y ey In) M . - kit Btk T
i R M(zizo, .o Zn)M(zlyc -ryp)dz r~ VolZvolL,
1
: = SoIE; x5, 1 xe:(0)
:‘_ 1 . t
g = —— {0
’:. VO]Z] X 22 §M¢,.( )
]
2 1 N e M@
volX; x &, = ' volo;

1 2‘: M, (0)

t volo;

| LIS

1=1

L
.
'
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As it turns out, the terms on the right-hand-side of this formula are all normalized

T,

{3

in the standard way for simplex splines. Hence, the simplex splines appearing on the

right-hand-side of (8) are those obtained by considering all possible paths through the

grid:
o= Y T1~ Y -+ In—Yp
Zo—-Y) Ty—Y1 ... ZIpn—Y ::'-'_'-_:'.
To-Y Tr1—Y% ... Tn—Yo ::.'_::._'
Formula (8) provides an easy way of evaluating inner products when the recurrence ) :fj:::
P el
relation (6) cannot be used because one or more of the simplex splines in the integral R
have only m - 1 knots. It also provides an easy way to dispense with (6) altogether, since AN
BN N
.
(8) is true independent of the number of knots appearing in the simplex splines in the T
AAE

6 T




S r e C 8 . e

ST T S 0 Y

=L

' TR wER O3 OF W ViEm S

integral. As elegant and clean as this approach is, however, it is much less efficient than
using recurrence relation (6) whenever possible, and then using relation (8) the rest of the
time.

This is best seen by considering the following calculation. Suppose that the value of
an inner product of a simplex spline with n + 1 knots and a simplex spline of p+ 1 knots
is desired. To obtain this value using formula (8) will require the evaluation of (":”)
simplex splines of degree n + p — m. Each of these simplex splines requires m + 1 times as
much work to evaluate as does a simplex spline of degree n + p — m — 1. Thus, the total
amount of work required is roughly equivalent to that of evaluating (m +1) ("}*) simplex
splines of degree n + p — m — 1. Now consider what happens when one application of the
recurrence relation (6) is applied, followed by this triangulation technique. The recurrence
relation will produce a sum of inner products, say 8, inner products of n + 1 knot and
p knot simplex splines, and é; inner products of » knot and p + 1 knot simplex splines.
Here 6, + 6 = m + 2, as remarked earlier. After triangulating each of these simploids,
the total number of degree n + p — m — 1 simplex splines which need to be evaluated is
6 ("P7) + 6 ("*;’"). Since 6; < m + 1 and §; < m + 1, with equality in at most
one of them, it follows that &;p + 62n < (m + 1)(n + p). Multiplying this inequality by

(n+ p— 1)!/(n!p!) yields
6,(n+:_l)+62(n+:bl><(m+1)(n:p). (9)

Thus, it is always more efficient to employ recurrence relation (6) whenever that is possible.

Example: Suppose that n = p = 5 and m = 2 above. Then using the recurrence

relation (6) once requires evaluation of 504 simplex splines of degree 7, while not using it

Lo *ale Sl ot ol Aalt Gl Sl Sl A Gl B SR el B i B ar G A i e el sy
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at all requires evaluation of 756 simplex spitier of dearee 7. nalf again as much work. Of

ST

i

\ course, it would make sense to employ (6) as often as possible to compute inner products.

&
.
T
a ¢
. 0
g

The point of this example is that even one application can make a tremendous difference.
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